
### Institut für Luft- und Kältetechnik Dresden gGmbH

Kühlen, Speichern, Heizen - effizient und erneuerbar mit Flüssigeis Mathias Safarik

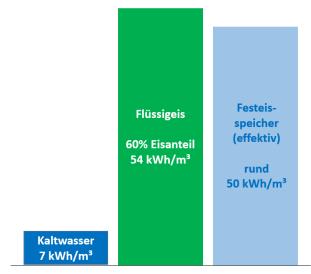
### Warum Kältespeicher?



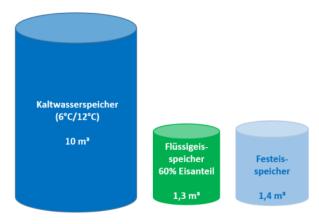
- Kühlaufgaben für unterschiedlichste Anwendungen
  - → Klimatisierung, Nahrungsmittelwirtschaft, industrielle Prozesse ...
- Kälteanlagen meist elektrisch angetrieben
- Deutschland: Kältetechnik = 14 % der Elektroenergie
- Warme Regionen: Kühlung/Klimatisierung dominiert elektr. Energiebedarf und Spitzenleistung → südliches China: 40...60 % des Elektroenergiebedarfs für Klimaanlagen
- Ausgeprägte elektrische Spitzenlasten durch Klimakälteerzeugung
- Ohne Speicher: Spitzenlast bestimmt Anlagendimensionierung
- Regenerativer Strom  $\Rightarrow$  "Power-to-Cold"



### Technologien zur Kältespeicherung



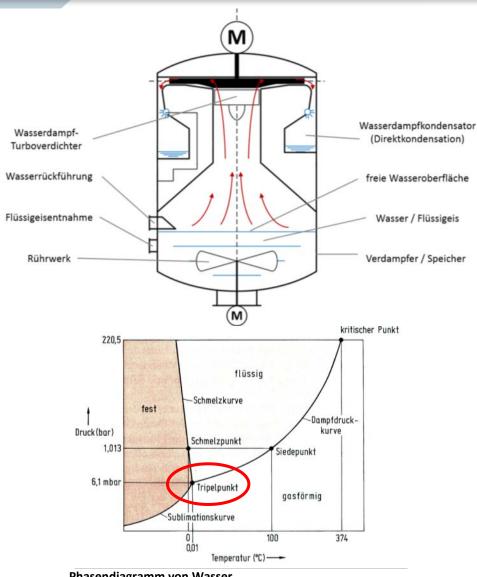

- Kaltwasserspeicher 6/12 °C, geringe Speicherdichte, große Volumina
- **Festeisspeicher** hohe Speicherdichte, geringe Flexibilität, niedrige Effizienz




Flüssigeisspeicher pumpfähiges Eis, hohe Speicherdichte, sehr flexibel, höchste Effizienz





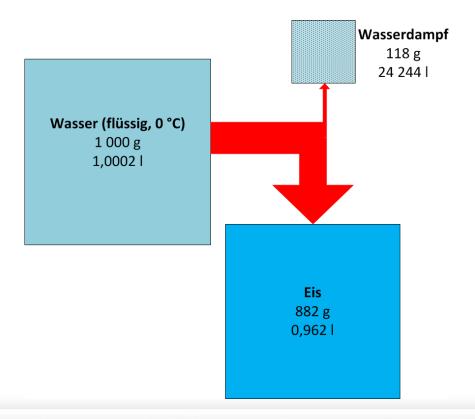

Vergleich der volumetrischen Speicherkapazität



Vergleich des Speichervolumens bei gleicher Kapazität

# Eiserzeugung durch Direktverdampfung



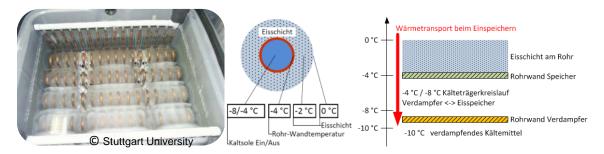



Verdampfungsenthalpie (6,1 mbar; 0,01 °C)

$$h_{\rm V}$$
 = 2500 kJ/kg

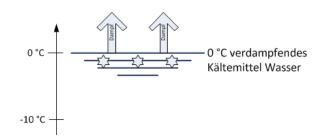
Erstarrungs-/Schmelzenthalpie

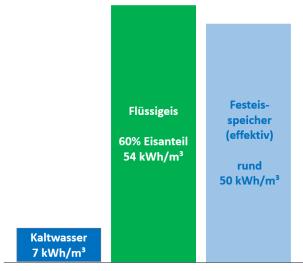
$$h_{\text{fus}} = 333,5 \text{ kJ/kg}$$



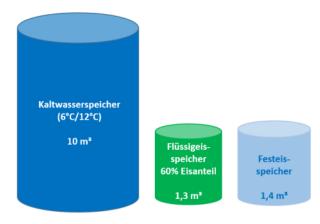

(Quelle: https://portal.uni-freiburg.de/fkchemie/lehre/grundvorlesung/uebungen/stunde6/pdwasser/view)

## Technologien zur Kältespeicherung





- Kaltwasserspeicher 6/12 °C, geringe Speicherdichte, große Volumina
- **Festeisspeicher** hohe Speicherdichte, geringe Flexibilität, niedrige Effizienz




Flüssigeisspeicher pumpfähiges Eis, hohe Speicherdichte, sehr flexibel, höchste Effizienz







Vergleich der volumetrischen Speicherkapazität



Vergleich des Speichervolumens bei gleicher Kapazität

## Vorteile von Vakuum-Flüssigeis

1

- 30 % höhere Effizienz als Festeisspeicher
- Einfache Ankopplung an bestehende Kälteversorgungssysteme
- Power-to-Cold: Speicherung von Nutzenergie, die ohnehin mit Strom erzeugt wird
- Preiswertes und Nachhaltiges Speichermedium und Kältemittel ohne Degradation
- Flexible Kombination von Speicherkapazität, Ein- und Ausspeicherleistung
- Zahlreiche weitere Applikationen







### Weitere Anwendungen



#### Wärmepumpenanwendungen

- "Heizen mit Eis"
- Wärmepumpen Seen, Flüsse, Meer, Grundwasser, Grubenwasser
- Kalte Nah-/Fernwärme

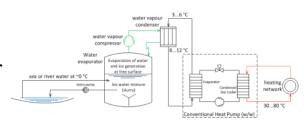
### Wärme-Kälte-Kopplung

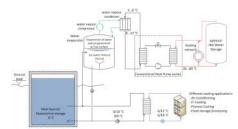
- Konstante Temperatur der Wärmequelle
- Höhere Wärmequellentemperatur als bei Luftwärmepumpen

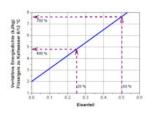
### Fernkälte (District Cooling)

Kapazitätserhöhung, Minimierung Transportaufwand, zentrale Kälteerzeugung

### Technische Schneeerzeugung


Leistungs- und Freizeitsport, Tourismus











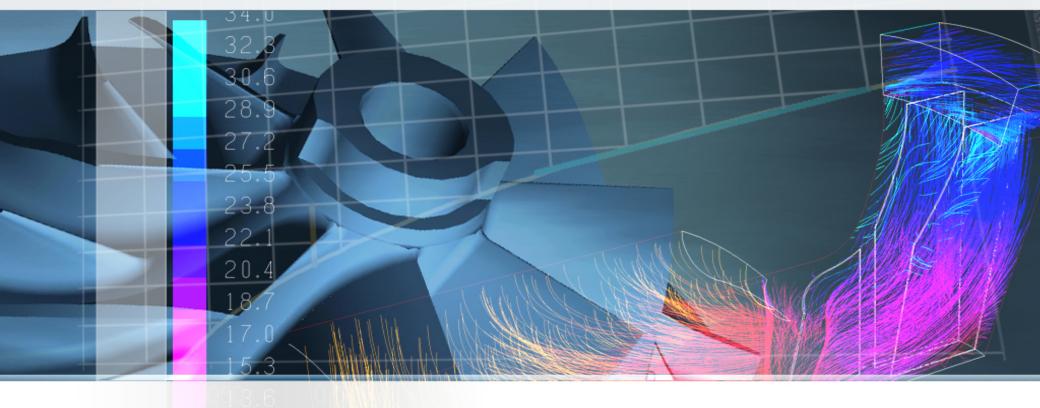



### **Deutscher Kältepreis 2016**



Vakuum-Flüssigeis-Technologie gewann den 1. Preis in der Kategorie "Innovationen in der Klima- und Kältetechnik"




http://www.klimaschutz.de/de/kaeltepreis





**ILK Dresden** 





#### Institut für Luft- und Kältetechnik

gemeinnützige Gesellschaft mbH Bertolt-Brecht-Allee 20, 01309 Dresden

Tel.: +49 351 / 4081-700 E-Mail: ice@ilkdresden.de

3.40

www.ilkdresden.de