

Aktuelle Forschungsthemen aus der Gasversorgung Wasserstoff als neue Energieträger

Prof. Dr. Hartmut Krause
Professur Gas- und Wärmetechnische Anlagen

Agenda

- Vorstellung der Professur
 die Fachbereiche und ihre Forschungsschwerpunkte
- Wasserstoff als Energieträger der Zukunft
 Herkunft und Integration in die Energieversorgung
- Das EU-Projekt BioRobur
 Wasserstofferzeugung aus Biogas
- HydroGIn
 Lokale Wasserstofferzeugung für kleine und mittlere Verbraucher
- Fazit

Struktur der Professur Gas- und Wärmetechnische Anlagen

Lehrstuhlleitung – Prof. Dr. Hartmut Krause

Sekretariat A. Graupner

Koordination Ausbildung
Dr. S. Wesolowski

Thematische Forschungsbereiche

Gastechnik

Prof. H. Krause

- Integration EE-Gase in die Gasversorgung
- Gaserzeugung und aufbereitung
- Modellierung von Gasnetzen
- Smart Gas Grids
- Systemanalytische Fragen der Energieund Gasversorgung

Gasverbrennung

Dr. S. Voß

- Laserdiagnostik -Modellbrenner-Untersuchungen
- Verbrennungstechn.
 Eigenschaften von
 Gasen und
 Gasgemischen
- Rußcharakterisierung
- Entwicklung von Verbrennungssystemen

Thermoprozesstechnik

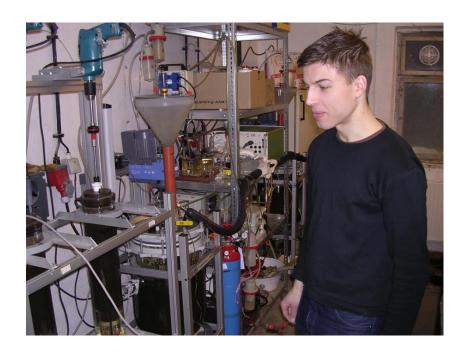
Dr. V. Uhlig

- Entwicklung von Thermoprozessanlagen
- Hochtemperatur-Materialien: Verhalten im Einsatz, Verschleiß und Korrosion
- Mikrowellentechnologien
- Energieeffizienz
- Wärmetechnische Optimierung

Energietechnik

A. Herrmann

- Moderne Gasverwendungssysteme (KWK)
- Energieeffizienz-Management, Ökobilanzen
- Systemanalyse der Energieversorgung
- Katalytische H2-Erzeugung
- Einbindung thermischer Solarenergie


Numerik

Prof. S. Ray

- Modellierung von Stoff- und Wärmetransport
- Modellierung von Prozessen in porösen Medien
- Reaktionen in Strömungen und an Oberflächen
- Entwicklung numerischer
 Verfahren
 (Lattice-Boltzmann)

Forschungsbereich Gastechnologien

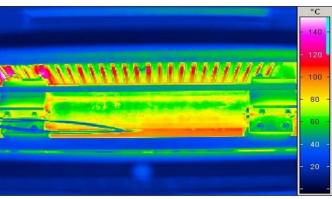
Zusammenarbeit mit dem An-Institut DBI-GTI

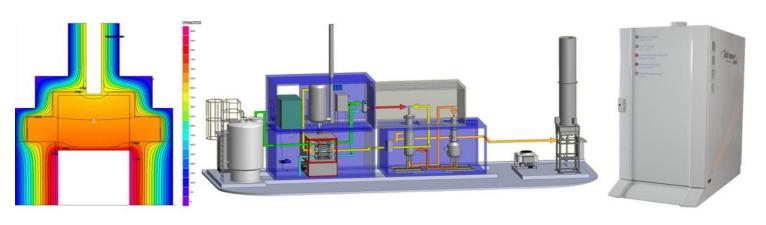
- Biogas- und Wasserstoff-Technologien
- Integration Erneuerbarer Energieträger
- Smart Grid Technologien
- Systemanalytische Fragen der Gasversorgung

Forschungsbereich Gasverbrennung

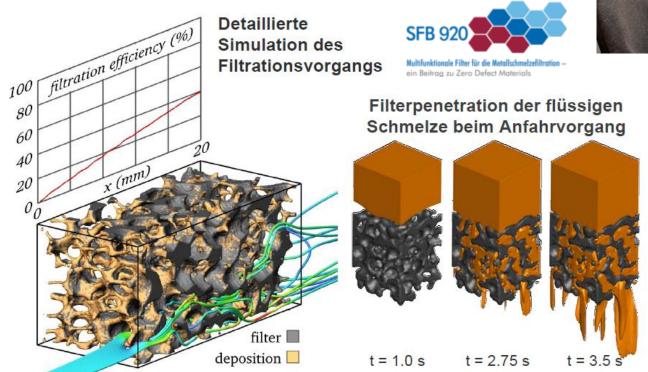
- Laserdiagnostik Modellbrenner-Untersuchungen
- Brenngeschwindigkeiten
- Rußcharakterisierung
- Verbrennung in porösen Medien
- Synthesegase und Sonderbrennstoffe
- Brenner- und Reformerentwicklung

Forschungsbereich Thermoprozesstechnik


- Wärmetechnische Optimierung
- Entwicklung von
 Thermoprozessanlagen /
 Industrieofenbau
- Mikrowellentechnologien
- Hochtemperaturmaterialien: Verhalten im Einsatz, Verschleiß und Korrosion



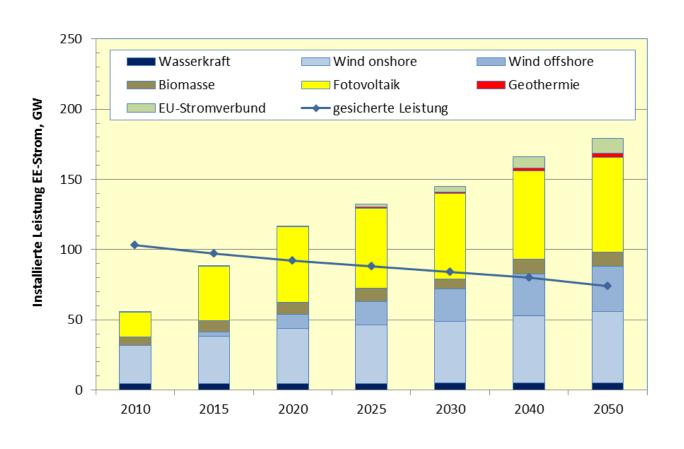
Forschungsbereich Energietechnik



- Einbindung von regenerativen Energieträgern in die Hausenergieversorgung
- Katalytische H₂ Erzeugung/ Aufbereitung aus
 Kohlenwasserstoffen
- Kraft-Wärme-Kopplung
- Energieeffizienzmanagement und Technologiebewertung

Forschungsbereich Numerik

- Modellierung und Simulation von Stoff- und Wärmetransport Vorgängen
- Modellierung und Simulation von Prozessen in porösen Medien
- Lattice-Boltzmann-Simulationen


Schwerpunkte:

- Simulation der Filtration von Metallschmelzen durch poröse Filter
- Berechnung der effektiven Eigenschaften von komplexen Materialien (Komposite, porös und teilporös)
- Simulation der Verdampfung innerhalb von porösen Strukturen
- Wärmebehandlung von gestapelten Gütern

- Perspektivisch wird neben der Energieversorgung mit Strom aus volatilen erneuerbaren Energieträgern wie Wind, PV, Biomasse ein Energieträger benötigt, der
 - verlustarm,
 - große Energiemengen transportieren und verteilen kann
 - saisonale Energiespeicherung erlaubt.
- Erhalt einer wirtschaftlichen Versorgungssicherheit der Energieversorgung auch mit Erneuerbaren Energieträgern
- Gemeinsame Aufgabe in allen Sektoren der Wirtschaft

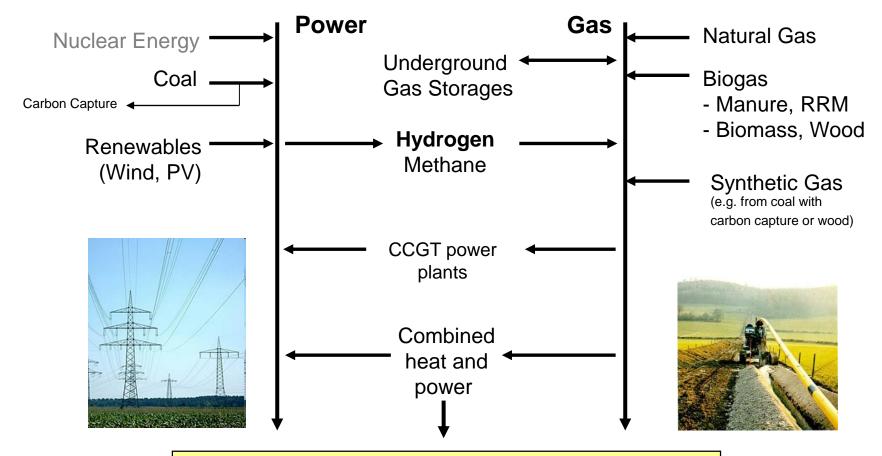
Deckung des deutschen Stromverbrauches durch EE-Strom

• 2030 63 %

2050 85 %

Struktur:

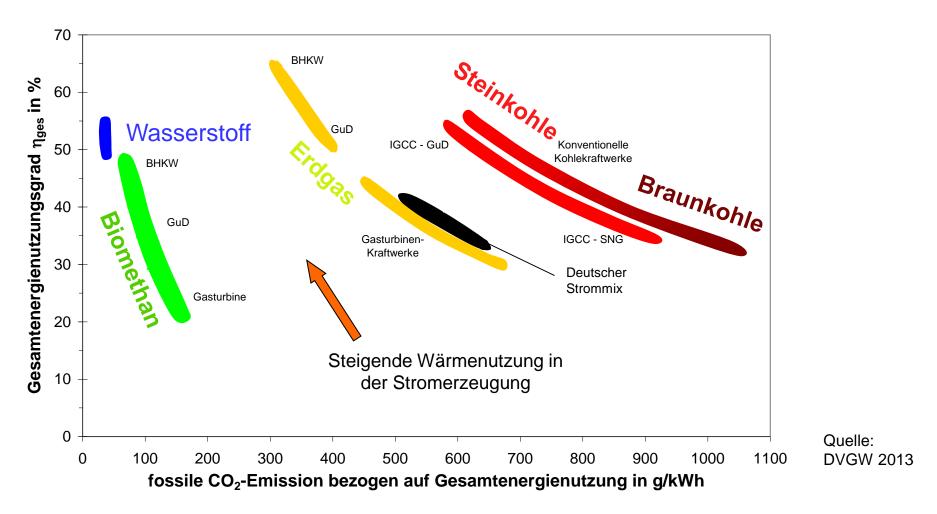
Hoher Anteil an volatilen Quellen aus Wind und PV


• 2030 44 %

• 2050 57 %

Quelle: Fhg-IWES/DLR, 03/2012, Szenario 2011 A

Prognose der Stromerzeugung aus Erneuerbaren Ressourcen Diskrepanz zwischen gesicherter und installierter Leistung



Production and Use of Heat and Power in Customer Appliances

Wasserstoff als Bindeglied zwischen existierenden Energieversorgungsnetzen

Wasserstoff aus erneuerbaren Energieträgern kann einen deutlichen Beitrag zur Senkung der THG Emissionen leisten.

Erneuerbare Gase und innovative Technologien in der Versorgung von Wohngebäuden

(kumulierte Werte 2013 – 2050)	Trend	Energiekonzept		Innovationsoffensive Gas	
	absolut	absolut	∆ zu Trend	absolut	∆ zu Trend
 Investitionen (Mrd. €) 	431	612	181	507	76
→ für Heizungen im Bestand	266	266	0	343	77
→ für Heizungen im Neubau	39	39	0	38	-1
→ für Wärmedämmungen im Bestand	87	262	175	87	0
→ für Wärmedämmungen im Neubau	40	46	6	40	0
- Energiekosten (Mrd. €)	832	736	-96	816	-16
 Kosten für Strom in Heizpatronen (Mrd. €)*1 	0,01	0,4	0,4	3	3
 Erlöse für Strom aus Klein-KWK (Mrd. €) *2 	10	16	6	65	55
Strategiekosten (Mrd. €)	1.253	1.332	80	1.260	7
 Kumulierte CO₂-Emissionen (Mio. tCO₂) (mit KWK-Gutschrift geg. Strom-Mix) 	2.395	1.752	-643	1.788	-607
 Spezifische Vermeidungskosten (€/tCO₂) (mit Gutschriften*³) 			124		12

^{*1:} Kosten für Strom in Heizpatronen mit Gaspreisen bewertet; *2: Erlöse für Klein-KWK-Strom mit 50% Ablösung Fremdstrombezug und 50% Einspeisung berücksichtigt;
*3: CO₂-Gutschrift für Klein-KWK mit szenarioabhängigem Strom-Mix gemäß Systembetrachtung "Strom".

Der Austausch von Erdgas durch H2 und Biomethan kann bei vernachlässigbaren Kosten zur CO2-Minimierung dennoch die Energiewende Ziele erreichen

Quelle: DVGW 2015

Das EU-Projekt BioRobur

Projekt:

BioRobur - Biogas robust processing with

combined catalytic reformer and trap units

Laufzeit: Mai 2013 – August 2016

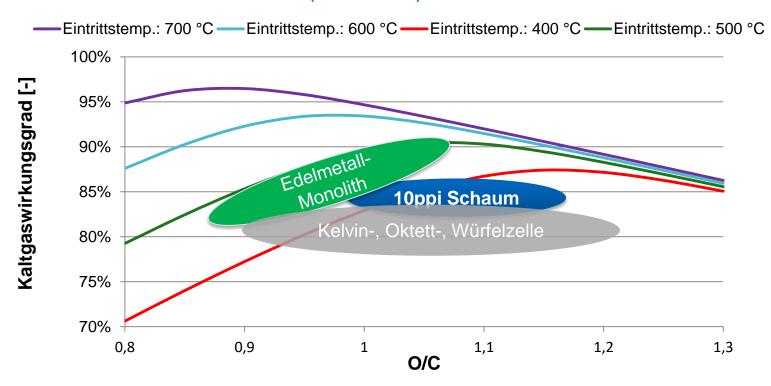
Budget: 3,7 Mio. Euro

Ziele:

- Entwicklung einer Demonstrationsanlage zur Herstellung von reinem Wasserstoff aus Biogas im Leistungsbereich von 50 m³(i.N.)/h
- Autotherme Reformierung
 (Einfaches Reaktordesign, gute Effizienz)
- Entwicklung preiswerter schwefelbeständiger Katalysatoren auf Nickelbasis
- Einsatz von regelmäßigen Katalysatorträgerstrukturen (Würfel-, Oktett-, Kelvinzelle)

Das EU-Projekt BioRobur

Projektpartner:


Internationales Team aus Forschungseinrichtungen und KmU

1	POLITECNICO DI TORINO	POLITO	Italy
2	TECHNISCHE UNIVERSITAET BERGAKADEMIE FREIBERG	TU-BAF	Germany
3	SCUOLA UNIVERSITARIA PROFESSIONALE DELLA SVIZZERA ITALIANA (SUPSI)	SUPSI	Switzerland
4	CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE	IRCE	France
5	CENTRE FOR RESEARCH AND TECHNOLOGY HELLAS	CPERI	Greece
6	Erbicol SA	ERBICOL	Switzerland
7	HYSYTECH S.R.L.	HST	Italy
8	UAB MODERNIOS E-TECHNOLOGIJOS	MET	Lithuania

Das EU-Projekt BioRobur

Vergleich zwischen numerischen und experimentellen Ergebnissen Parameterstudie mit ASPEN (S/C = 2.0)

Experimentell bestimmte Kaltgaswirkungsgrade:

- Edelmetall Monolith in der großen Anlage: bis 90%
- 10 ppi Schaum in der großen Anlage: max. 86%
- Kelvin-, Oktett-, Würfelzelle, Schaum im Kat.-Teststand: 80 bis 85%

Das Projekt HydroGIn

Projekt:

HydroGIn - Hydrogen Generator für die Industrie

Laufzeit: Dezember 2015 – Mai 2018

Budget: 1,8 Mio. Euro

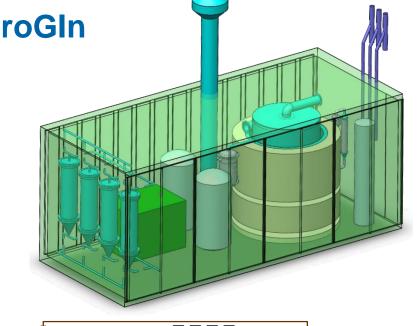
GEFÖRDERT VOM

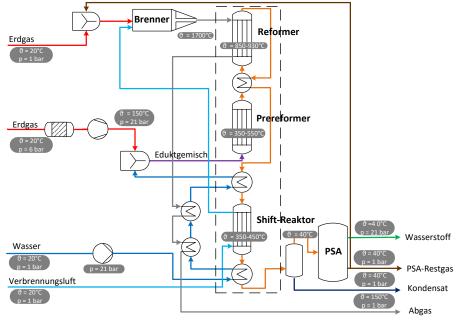
Ziel:

- Entwicklung eines Demonstrationsmusters zur Vor-Ort-Generierung von reinem Wasserstoff (Qualität 3.5) aus Erdgas
- für Industrie und Verkehr im Leistungsbereich von 100 m³(i.N.)/h bei einem Betriebsdruck von 20 bar(g)
- Kompakter und energetisch hocheffizienter Aufbau

Partner:

Informationen: http://www.dbi-gruppe.de/hydrogin.html


Das Projekt HydroGIn


Modularer Aufbau:

- Gas- und Prozesswasseraufbereitung
- Verdampfung, Dampfreformierung und CO-Konvertierung
- H2-Separation:Druckwechseladsorption

Aktueller Arbeitsstand:

- Energetische Analysen des Gesamtprozesses
- Sensitivitätsanalysen unter Nutzung ergeben einen theoretischen Prozesswirkungsgrad von maximal 83%.

Das Projekt HydroGIn

Basis Know-How:

- Kompaktreformer basiert auf Know-how des DBI für Reformierung in Niedertemperatur-PEM-Brennstoffzellen-BHKW
- Erkenntnisse der Demoanlage BioRobur fließen ein

 Reformerzone, Eduktvorwärmung und Produktkühlung optimal wärmetechnisch kompakt verschaltet

Neue Entwicklungen:

Aufbau eines Versuchsstandes zur Untersuchung von Festbettkatalysatoren für:

- Dampfreformierung von Erdgas bei 21 bar(a) und max. 930°C und
- Wassergas-Shift-Reaktion von Synthesegas bei 21 bar(a) und max. 500°C

Kompaktreformer für PEMFC-BHKW

Fazit

- Wasserstoff ist ein wesentliches Thema in der Energiewende in allen Sektoren der Wirtschaft
- Sachsen hat sowohl Know-How als auch die Infrastruktur um einen Keim für eine nachhaltige Entwicklung zu bieten
 - Bestehende Wasserstoffversorgung in der Chemieregion Halle-Leipzig
 - Existierende Untergrundgasspeicher für Erdgas
 - Zahlreiche Forschungseinrichtungen und innovative KmU haben das Thema aufgegriffen.
- Leuchtturm: HYPOS Hydrogen Power and Storage East Germany Vorbereitung einer 100 % Wasserstoff-Energieversorgung

Kontakt

Prof. Dr.-Ing. Hartmut Krause Inhaber der Professur

Tel.: +49 3731 39-3940

email: hartmut.krause@iwtt.tu-freiberg.de

Angelika Graupner Sekretariat

Tel. +49 3731 39 3940

email: angelika.graupner@iwtt.tu-freiberg.de

Kontaktadresse:

Professur Gas- und Wärmetechnische Anlagen im Institut für Wärmetechnik und Thermodynamik Lampadiusbau, Gustav-Zeuner-Straße 7 09596 Freiberg

Fax +49 3731 39 3942

web: www.gwa.tu-freiberg.de

